

Date Planned ://	Daily Tutorial Sheet-1	Expected Duration : 90 Min		
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :		

1.	Calculate the density of NH ₃ at 30°C and 5 atm pressure.								(1978)
2.	4.215	4.215 g of a metallic carbonate was heated in a hard glass tube, the CO_2 evolved was found to measure							
									(F) (1979)
3.		3.7 g of a gas at 25°C occupied the same volume as 0.184g of hydrogen at 17°C and at the same							
.	pressure. What is the molecular weight of the gas?							(1979)	
4.	A hyd	A hydrocarbon contains 10.5 g of carbon per gram of hydrogen. 1 L of the vapour of the hydrocarbon at							
	127°C and 1 atm pressure weighs 2.8 g. Find the molecular formula of the hydrocarbon.								(1980)
5.	The p	The pressure in a bulb dropped from 2000 to 1500 mm of mercury in 47 min when the contained oxyger							
	leaked	leaked through a small hole. The bulb was then evacuated. A mixture of oxygen and another gas or							
	molec	molecular weight 79 in the molar ratio of 1: 1 at a total pressure of 4000 mm of mercury was introduced							
	Find t	the molar ratio	of the two	gases remaining	g in the l	oulb after a pe	eriod of 74	min.	(1981)
6.	The ra	The ratio of root mean square velocity to average velocity of a gas molecule at a particular temperature is:							
	(A)	1.085 :1	(B)	1:1.086	(C)	2:1.086	(D)	1.086:2	(1981)
7.	The te	emperature at	which a re	al gas obeys the	ideal gas	s laws over a	wide range	of pressure is:	(1981)
	(A)	critical tem		3	(B)	Boyle temp	_	•	` ,
	(C)	Inversion te	mperature	;	(D)	reduced ter	nperature		
8.	Calcu	late the averag	ge kinetic e	energy, in joule p	er molec	ule in 8.0 g o	f methane	at 27°C.	(1982)
9.	Helium atom is two times heavier than a hydrogen molecule. At 298 K, the average kinetic energy of a								
		n atom is:		,	0			G	(1982)
	(A)	two times th	nat of a hy	drogen molecule	(B)		•	rogen molecule	
	(C) four times that of a hydrogen molecule (D) half that of a hydrogen molecule								
10.	_	in a closed co rue or false?	ntainer wi	ll exert much hig	gher pres	ssure due to g	gravity at t	he bottom than	n at the top. (1983)
11.	Give r	easons for the	following	in one or two ser	itences.				(1983)
	(i) Equal volumes of gases contain equal number of moles.								
	(ii) A bottle of liquid ammonia should be cooled before opening the stopper.								
12 .		-		iced into an evac		-	-		
	atmosphere. If 3g of another gas B is then added to the same flask, the total pressure becomes 1.5 atmosphere atmosphere. If 3g of another gas B is then added to the same flask, the total pressure becomes 1.5 atmosphere. Assuming ideal gas behavior, calculate the ratio of the molecular weights M_A : M_B . (1986)								nes 1.5 atm. (1983)
10									
13.	Oxygen is present in one litre flask at a pressure of 7.6×10^{-10} mm Hg. Calculate the number molecules in the flask at 0°C.							er of oxygen (1984)	
14.				unrestrained exp	ansion	no cooling oc	curs hecau	ise the molecul	
	(A)	_	_	n temperature	(B)	_		ces on each oth	\sim
	(C)			in kinetic energy	(D)	collide with			
15.		•		are velocity of o				-	cm mercury
	pressi	ure.							(1985)